4 resultados para PPAR-gamma

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pioglitazone is a thiazolidinedione (TZD) antihyperglycemic agent introduced in 1999 for the treatment of type 2 (non-insulin dependent) diabetes mellitus. Another TZD, rosiglitazone, is also used in the treatment of type 2 diabetes. Troglitazone has been withdrawn from clinical use, and other TZDs, such as ciglitazone, have not proceeded into clinical use. Pioglitazone, like other TZDs, improves insulin action mainly by activation of the nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Peroxisome proliferator-activated receptor-gamma is most strongly expressed in adipose tissue and weakly expressed in liver and skeletal muscle, and activation of PPAR-gammain these tissues reinforces the effects of insulin. Pioglitazone may exert effects on other tissues that express PPAR-gamma ..... © 2007 Copyright © 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs), also termed "glitazones", are used as antidiabetic agents for the treatment of type 2 (non-insulin dependent) diabetes mellitus. They activate the nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma). This increases the transcription of various insulin-sensitive genes, improving insulin action and lowering blood glucose concentrations. TZDs currently in clinical use for the treatment of type 2 diabetes are rosiglitazone and pioglitazone. Troglitazone was withdrawn due to hepatotoxicity. Other TZDs (e.g. ciglitazone) have been studied preclinically, but not introduced into clinical use. TZDs do not cause severe hypoglycemia, hence they are regarded as antihyperglycemic (rather than hypoglycemic) agents .... © 2007 Elsevier Inc. All rights reserved..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Delayed graft revascularization impedes the success of human islet transplantation. This study utilized rotational co-culture of insulin secreting ß-cells with human umbilical vein endothelial cells (HUVECs) and a peroxisome proliferator-activated receptor gamma (PPAR-?) agonist to promote insulin and vascular endothelial growth factor (VEGF) secretory function. Methods: Clonal BRIN-BD11 (D11) cells were maintained in static culture (SC) and rotational culture (RC) ± HUVEC and ± the TZD (thiazolidinedione) rosiglitazone (10 mmol/l) as a specific PPAR-? agonist. HUVECs were cultured in SC and RC ± D11 and ± TZD. D11 insulin secretion was induced by static incubation with low glucose (1.67 mmol/l), high glucose (16.7 mmol/l) and high glucose with 10 mmol/l theophylline (G+T) and assessed by enzyme-linked immunosorbent assay (ELISA). HUVEC proliferation was determined by ATP luminescence, whereas VEGF secretion was quantified by ELISA. Co-cultured cells were characterized by immunostaining for insulin and CD31. Results: D11 SC and RC showed enhanced insulin secretion in response to 16.7 mmol/l and G+T (p <0.01); without significant alteration by the TZD. Co-culture with HUVEC in SC and RC also increased D11 insulin secretion when challenged with 16.7 mmol/l and G+T (p <0.01), and this was slightly enhanced by the TZD. The presence of HUVEC increased D11 SC and RC insulin secretion in response to high glucose and G+T, respectively (p <0.01). Addition of the TZD increased SC and RC HUVEC ATP content (p <0.01) and VEGF production (p <0.01) in the presence and absence of D11 cells. Conclusions: Rotational co-culture of insulin secreting cells with endothelial cells, and exposure to a PPAR-? agonist may improve the prospects for graft revascularization and function after implantation. © 2011 Blackwell Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Humans with inactivating mutations in peroxisomal proliferators activated receptor gamma (PPAR?) typically develop a complex metabolic syndrome characterized by insulin resistance, diabetes, lipodystrophy, hypertension, and dyslipidaemia which is likely to increase their cardiovascular risk. Despite evidence that the activation of PPAR? may prevent cardiac fibrosis and hypertrophy, recent evidence has suggested that pharmacological activation of PPAR? causes increased cardiovascular mortality. In this study, we investigated the effects of defective PPAR? function on the development of cardiac fibrosis and hypertrophy in a murine model carrying a human dominant-negative mutation in PPAR?. Methods and results: Mice with a dominant-negative point mutation in PPAR? (P465L) and their wild-type (WT) littermates were treated with either subcutaneous angiotensin II (AngII) infusion or saline for 2 weeks. Heterozygous P465L and WT mice developed a similar increase in systolic blood pressure, but the mutant mice developed significantly more severe cardiac fibrosis to AngII that correlated with increased expression of profibrotic genes. Both groups similarly increased the heart weight to body weight ratio compared with saline-treated controls. There were no differences in fibrosis between saline-treated WT and P465L mice. Conclusion: These results show synergistic pathogenic effects between the presence of defective PPAR? and AngII-induced hypertension and suggest that patients with PPAR? mutation and hypertension may need more aggressive therapeutic measures to reduce the risk of accelerated cardiac fibrosis. © The Author 2009.